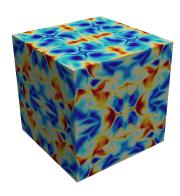
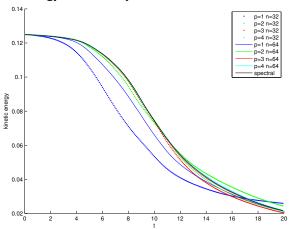
High Order Workshop Results for Case 3.3 Taylor-Green Vortex Re = 1600

Michael J. Brazell and Dimitri J. Mavriplis

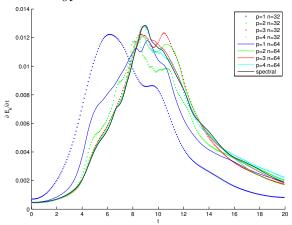

Department of Mechanical Engineering University of Wyoming

January 4, 2015

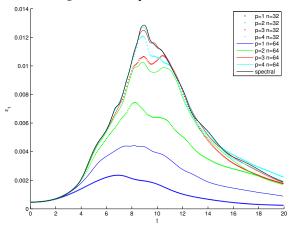
Flow Solver



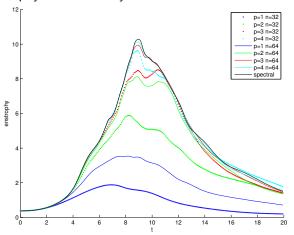
- Unstructured Discontinuous
 Galerkin Finite Flement Method
- Modal basis functions
- ► Time discretization: Runge-Kutta 4
- ► Compressible Navier-Stokes in conservative variables
- Inviscid flux: Lax-Friedrichs, Roe, AUFS
- Viscous flux: symmetric interior penalty (SIP)


Kinetic energy for the Taylor-Green vortex at Re = 1600

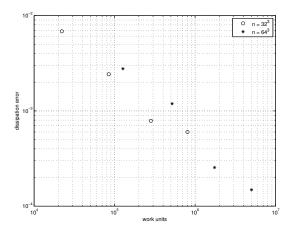
Results



Dissipation rate $\frac{\partial E_k}{\partial t}$ for the Taylor-Green vortex at Re=1600



Dissipation rate ϵ_1 for the Taylor-Green vortex at Re=1600


Enstrophy ${\cal E}$ for the Taylor-Green vortex at ${\it Re}=1600$

Results

- ightharpoonup Dissipation error vs work units for the Taylor-Green vortex at Re=1600
- ▶ Time step is fixed and based on stability of most resolved case

Dissipation error vs DOF for the Taylor-Green vortex at Re=1600

Results

Iso-Contours of vorticity magnitude $\frac{L}{V_0}|\omega|=15,10,20,30$ at $\frac{t}{t_c}=8$ and $\frac{x}{L}=-\pi$ for the Taylor-Green vortex at Re=1600, DG p=4, $n=64^3$ (red), pseudo-spectral (black)

Conclusions

- The resolved simulations match spectral closely
- ▶ p-refinement improves accuracy better than h-refinement
- Work units are reasonable considering modal basis and unstructured data structure